CHROM. 15,399

Note

Gas chromatographic separation of enantiomers of O-acyl alcohols

NAOBUMI ÔI*, RYOZO TAKAI and HAJIMU KITAHARA

Institute for Biological Science, Sumitomo Chemical Co. Ltd., 4-2-1 Takatsukasa, Takarazuka-shi, Hyogoken 665 (Japan)

(Received September 27th, 1982)

We have previously accomplished the first direct enantiomer separation of some chiral alcohols^{1,2} but rather long retention times are required for efficient separation. More recently we showed the excellent separation of some alcohols and α -hydroxycarboxylic acid enantiomers in the form of N-isopropyl carbamates³ with moderate retention times. König and co-workers^{4,5} have also reported independently the same procedure for the enantiomer separation of alcohols, amines and hydroxy acids. However, alcohol enantiomers have never been resolved in the form of O-acyl derivatives.

We have found that some novel amide phases are suitable for the separation of some carboxylic acid ester enantiomers^{6–8}. This result suggested that these phases might be effective as chiral stationary phases for the separation of O-acyl alcohol enantiomers. In this paper, we describe the separation of some O-acyl alcohol enantiomers using such chiral amide phases.

EXPERIMENTAL

Synthesis of stationary phase

N-(1R,3R)-trans-Chyrsanthemoyl-(R)-1- $(\alpha$ -naphthyl)ethylamine (phase I)⁶ and O-(1R,3R)-trans-chrysanthemoyl-(S)-mandelic acid (R)-1- $(\alpha$ -naphthyl)ethylamide (phase II)⁸ were prepared as described previously.

Gas chromatography

The experiments were carried out with a Shimadzu GC-7A gas chromatograph equipped with a flame-ionization detector. The glass capillary columns ($40 \text{ m} \times 0.25 \text{ mm}$ I.D.) were coated with a 5% solution of each stationary phase in chloroform.

Several chiral alcohols were O-acylated with acetic anhydride or trifluoroacetic anhydride.

Phoracantholide I and phoracantholide J were kindly supplied by Dr. Kenji Mori (Tokyo University, Tokyo, Japan).

Phoracantholide J

Fig. 1. Gas chromatogram of racemic O-acetyl-1-phenylethanol. Glass capillary column (40 m \times 0.25 mm I.D.) coated with N-(1*R*,3*R*)-trans-chrysanthemoyl-(*R*)-1-(α -naphthyl)ethylamine. Temperature: 80°C. Carrier gas: helium at a flow-rate of 0.7 ml/min.

Fig. 2. Gas chromatogram of racemic phoracantholide I. Glass capillary column (40 m \times 0.25 mm I.D.) coated with O-(1*R*,3*R*)-*trans*-chrysanthemoyl-(*S*)-mandelic acid (*R*)-1-(α -naphthyl)ethylamide. Temperature: 100°C. Carrier gas: helium at a flow-rate of 0.7 ml/min.

TABLE I

GAS CHROMATOGRAPHIC SEPARATION OF O-ACETYL ALCOHOL ENANTIOMERS

Glass capillary column (40 m × 0.25 mm I.D.). Carrier gas: helium at a flow-rate of 0.7 ml/min.

Compound	Column temperature ("C)	Optically active stationary phase					
		Phase I Retention time (min)* x**			Phase II Retention time (min)* a**		
		O-Acetyl-1-phenylethanol	80	61.5(<i>S</i>)	64.0(<i>R</i>)	1.040	47.6(<i>S</i>)
O-Trifluoroacetyl-1-phenyl- ethanol	80	8.4	8.4	1.000	6.1	6.3	1.026
O-Acetyl-1-phenyl-2,2,2-trifluoro- ethanol	80	17.5	18.0	1.029	15.0	15.4	1.028
O-Acetyl-1-(α-naphthyl)ethanol	150	116.1	120.2	1.035	84.2	87.3	1.037
O-Trifluoroacetyl-1-(x-							
naphthyl)ethanol	120	72.9	74.0	1.014	22.8***	23.4***	1.026***
O-Acetyl-Pantoyllactone	120	51.2(R)	53.1(S)	1.037	41.3(R)	42.7(S)	1.034
O-Trifluoroacetyl-Pantoyllactone	120	9.6	9.9	1.025	18.9 \$	19.3 \$	1.019 8
Phoracantholide I	100	_	_	-	30.2(S)	30.8(R)	1.018
Phoracantholide J	100	_	-	_	41.1(S)	41.7(<i>R</i>)	1.016

* Measured from solvent peak.

** Separation factor (2nd/1st).

*** Measured at 130°C.

[§] Measured at 100°C.

RESULTS AND DISCUSSION

The gas chromatographic results are given in Table I and typical chromatograms are shown in Figs. 1 and 2.

Several O-acetylated and O-trifluoroacetylated alcohols were resolved into their antipodes on the two chiral amide phases. It should be also emphasized that phoracantholide I and J, which are prepared by intramolecular acylation of chiral alcohols, can be separated on phase II without any pre-treatment.

The direct separation of such lactone enantiomers is significant for the determination of optical purity, as derivatization into their diastereoisomers is difficult with these compounds.

REFERENCES

- 1 N. Ôi, T. Doi, H. Kitahara and Y. Inda, Bunseki Kagaku (Jap. Anal.), 30 (1981) 79.
- 2 N. Ôi, T. Doi, H. Kitahara and Y. Inda, J. Chromatogr., 208 (1981) 404.
- 3 M. Horiba, S. Kida, S. Yamamoto and N. Ôi, Agr. Biol. Chem., 46 (1982) 281.
- 4 W. A. König, W. Francke and I. Benecke, J. Chromatogr., 239 (1982) 227.
- 5 W. A. König, I. Benecke and S. Sievers, J. Chromatogr., 238 (1982) 427.
- 6 N. Ôi, H. Kitahara, Y. Inda and T. Doi, J. Chromatogr., 213 (1981) 137.
- 7 N. Ôi, H. Kitahara, Y. Inda and T. Doi, J. Chromatogr., 237 (1982) 297.
- 8 N. Ôi, H. Kitahara and T. Doi, J. Chromatogr., 254 (1983) 282.